

Representing behavioral data in context: Behavioral data as Knowledge Graphs (KG) Knowledge Graph Engineering

Big-Thick Data

Adapted from:

- Gomez Ortega, A., et al. (2022)
- Tobias Bornakke and Brian L. Due. (2018)

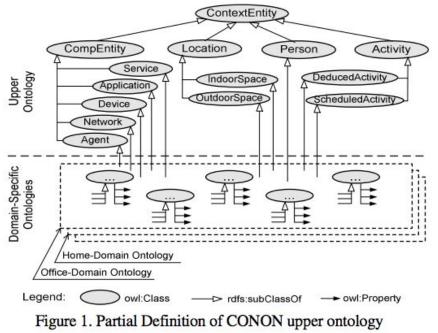
opportunity

DNTEX

What is Personal Context?

Context is "a theory of the world which encodes an individual's subjective perspective about it ." [1]

[1] F. Giunchiglia. Contextual reasoning. Epistemologia, special issue on I Linguagg e le Macchine, 16:345–364, 1993.

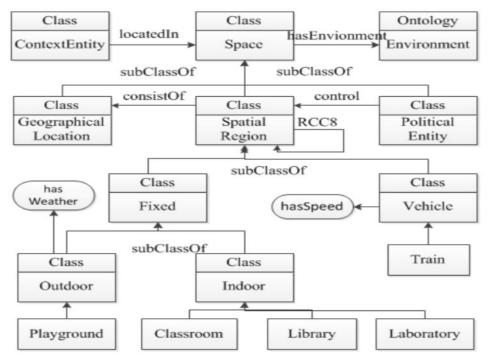


Existing Personal Context Models

CONON model ^[2]

- Focus on modeling locations.
- Upper ontology and lower domain-specific ontology
- Lower domain specific ontology depends on the use case scenario
- They applied this model in a SmartHome environment.

[2] Wang, Xiao Hang, et al. "Ontology based context modeling and reasoning using OWL." IEEE annual conference on pervasive computing and communications workshops, 2004. Proceedings of the second. Ieee, 2004.



Existing Personal Context Models

CaCONT model^[3]

- Fucose on five elements:
 - User, space, environment, device, service
- One model for each element
- Use rule-based system to do recognition

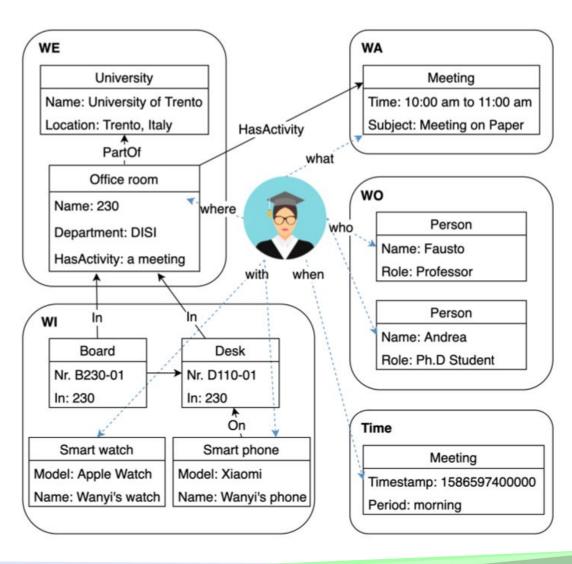
[3] Xu, Nan, et al. "CACOnt: A ontology-based model for context modeling and reasoning." Applied Mechanics and Materials. Vol. 347. Trans Tech Publications Ltd, 2013.

Existing Personal Context Models

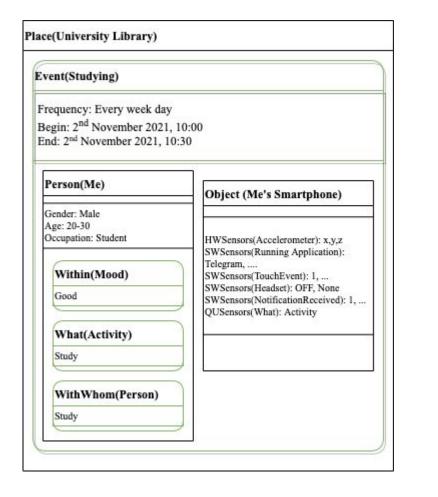
Two main limitations:

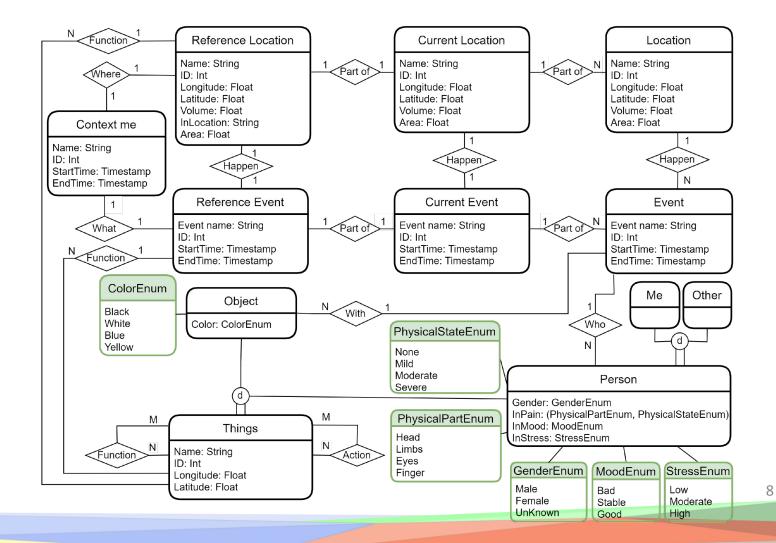
- They do not account for subjectivity of context descriptions
 - "Supermarket" is "a place for shopping" for normal customer,
 - but it is "a working place" for staffs who work there.
- The correlations between different aspects are important, while most model are restrict to one of few of the aspects.

Subjective context

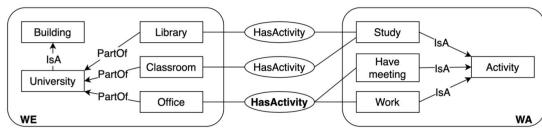

Multi-modality context model

Personal Context Model


- MyWorld = <me, Context>
- Context = <TIME, WE, WA, WO, WI>
 - TIME: "When does this context occur?"
 - WE: "Where are you?"
 - WA: "What are you doing?"
 - WO: "Who is with you?"
 - WI: "What are you with?"



Entity Type Graph (ETG) Representation



Endurant & Perdurant Context

- Context aggregates different dimensions of a person's environment basing on points of view, i.e., humans fundamentally use two elements to drive their representation: location and activity.
- The context can provide different representation of the same state of affairs depending on which element is more important.
- Endurant context: "I'm in the office".
- Perdurant context: "I'm having a meeting"

"I'm in the office": Endurant salience

"I'm having a meeting": Perdurant salience

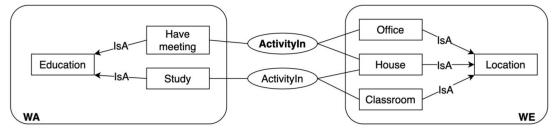
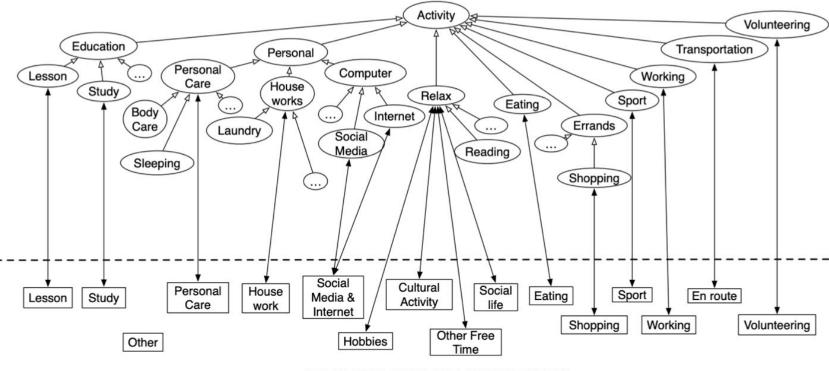


Figure 4.2: The difference between the notions of endurant and perdurant context.

Objective & Subjective Context

Level	TIME	WE	WA	WO
Objective Context	2020-04-11 11:30am	Via Sommarive, 9, 38123 Povo TN	Talk	Prof. Fausto
Subjective Context	Morning	Office	Have meeting	Supervisor
Machine Context	1586597400000	46°04'01.9"N 11°09'02.4"E	Accelerometer: 0g,0g,0g	"Fausto" is in contact list


Table 4.1: An example of our three-partitioned context model.

Personal Context Annotation -Activities

WA CONTEXT

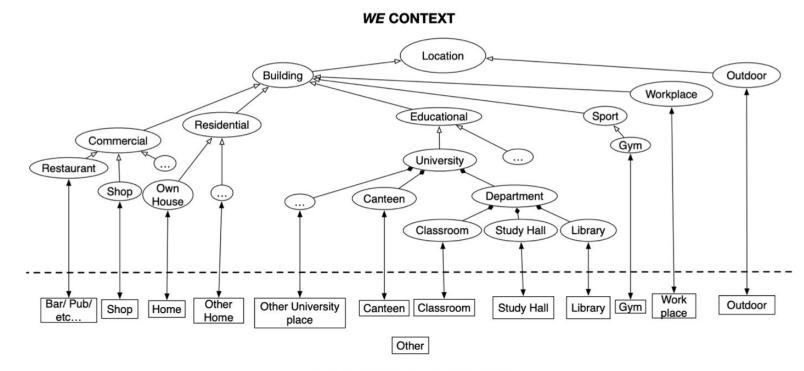

QUESTION: WHAT ARE YOU DOING?

Figure 4.3: The mapping from the WA context to the activities annotation list.

Personal Context Annotation - Locations

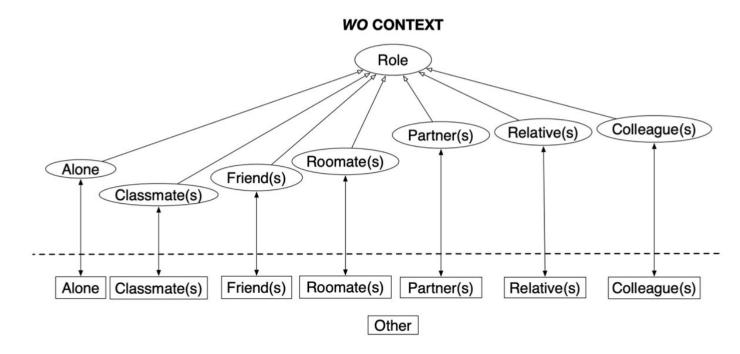

QUESTION: WHERE ARE YOU?

Figure 4.4: The mapping from the WE context to the locations annotation list.

Personal Context Annotation – Social Relations

QUESTION: WHO IS WITH YOU?

Figure 4.5: The mapping from the WO context to the social relations annotation list.

13

1. Where to collect (sensor) data from?

Which devices can generate sensor data?

- IoT
- Dedicated devices
- Smartphones
- Wearables

- Each of them can be used to collect a subset of data related to the user.
- The device convenience depends on the specific conditions of the study.

Dedicated devices - Movement

- Custom made devices
- They are very accurate in the measurements
- Most of the times are obtrusive and expensive to deploy at scale

Dedicated devices - Health

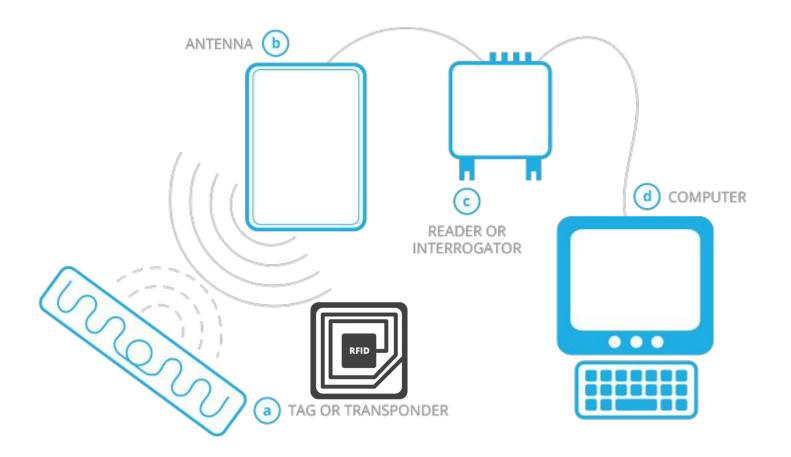
- Devices built for a specific purpose, e.g., glucose monitoring
- They are perfect for their specific task and very accurate
- Expensive
- Hard to scale

Wearables Examples

Fitbit

Apple Watch

Google Glasses


Play Store

18

Radio Frequency Identification (RFID)

19

2. Sensor data by Types

- Hardware
- Software
- (Externals)

iLog Hardware Sensors List (incomplete)

No	HW Sensor	Estimated Frequency	Category
1	Accelerometer	up to 10 samples per second	Big
2	Gyroscope	up to 10 samples per second	Big
3	Light	up to 10 samples per second	Big
4	Location	Once every minute	Small
5	Magnetic Field	up to 10 samples per second	Big
6	Pressure	up to 10 samples per second	Big

Hardware Sensors Description

1 (Accelerometer) measures the acceleration to which the phone is subjected and it captures it as a 3D vector;

2 (**Gyroscope**) measures the rotational forces to which the phone is subjected and it captures it as a 3D vector;

3 (Light) measures the ambient illumination around the phone, measured in illuminance (lux);

4 (**Location**) returns the geocoordinates of where the phone is located, for more accuracy this sensor combines GPS and WIFI/cellular connections;

5 (**Magnetic Field**) measures the magnetic field to which the phone is subjected and it captures it as a 3D vector;

6 (**Pressure**) measures the ambient air pressure to which the phone is subjected.

iLog Software Sensors List (incomplete)

No	SW Sensor	Estimated Frequency	Category
7	Airplane Mode [ON/OFF]	On change	Small
8	Battery Charge [ON/OFF]	On change	Small
9	Battery Level	On change	Small
10	Bluetooth Devices	Once every minute	Small
11	Bluetooth LE (Low Energy) Devices	Once every minute	Small
12	Cellular network info	Once every minute	Small
13	Doze Mode [ON/OFF]	On change	Small
14	Headset Status [ON/OFF]	On change	Small
15	Movement Activity Label	Once every 30 seconds	Small
16	Movement Activity per Time	Once every 30 seconds	Small
17	Music Playback (no track information)	On change	Small
18	Notifications received	On change	Small
19	Proximity	up to 10 samples per second	Small
20	Ring mode [Silent/Normal]	On change	Small
21	Running Applications	Once every 5 seconds	Small
22	Screen Status [ON/OFF]	On change	Small
23	Step Counter	up to 10 samples per second	Small
24	Step Detection	On change	Small
25	Touch event	On change	Small
26	User Presence	On change	Small
27	WIFI Network Connected to	On change	Small
28	WIFI Networks Available	Once every minute	Small

Software Sensors Description (1)

7 (**Airplane Mode**) returns whether the phone's Airplane mode is on or off, Airplane mode turns off all the connectivity features of the phone;

8 (Battery Charge) returns whether the phone is currently charging its battery;

9 (Battery Level) returns the phone's battery level;

10 (Bluetooth Devices) returns all Bluetooth devices detected by the phone;

11 (**Bluetooth Low Energy**) returns all the low energy Bluetooth devices detected by the phone;

12 (**Cellular Network info**) returns information related to the cellular network (cellid, dbm, type) to which the phone is connected to;

13 (**Doze Mode**) returns whether the phone's doze mode is on or off. Doze mode is a low battery consumption state in which the phone enters after some time of not being used;

Software Sensors Description (2)

14 (**Headset status**) returns whether the headphones of the phone where connected;

15 (**Movement activity label**) returns a label identifying the activity performed by the user. This value is computed by Android using Google's Activity Recognition API along with low power signals from multiple sensors in the device. Possible activities are: *still, in_vehicle, on_bicycle, on_foot, running, tilting, walking*;

16 (**Movement activity per Time**) similar to the previous sensor, again computed via the Google API, but data are presented grouped by time instead of being grouped by labels;

17 (**Music Playback**) returns whether music is being played on the phone (yes or no) using the default music player from the operating system;

18 (Notifications received) measures when the phone receives a notification and when it is dismissed by the user;

Software Sensors Description (3)

19 (**Proximity**) measures the distance between the user's head and the phone, depending on the phone it may be measured in centimeters (i.e., the absolute distance) or as labels (e.g, 'near', 'far');

20 (**Ring Mode**) returns the current ring status of the phone (normal/silent/vibrate);

21 (**Running Applications**) returns the name of the application (or application package) that is currently running in the foreground of the phone;

22 (Screen status) returns whether the phone's screen is on or off;

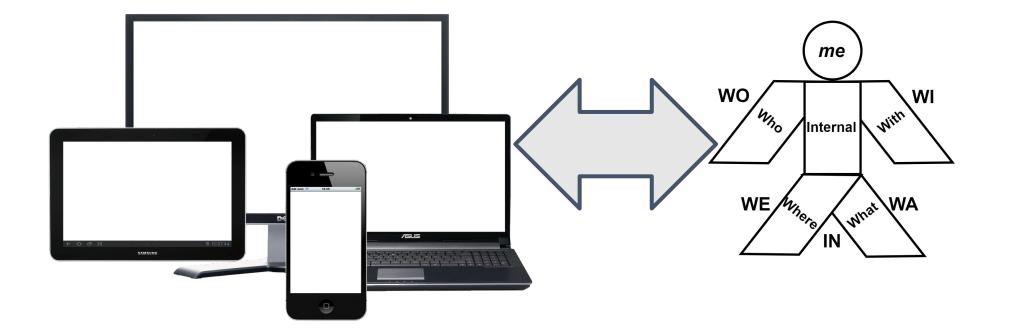
23 (**Step Counter**) uses the Android API to measure the number of steps made by the user (while carrying the phone) since the phone was turned on;

Software Sensors Description (4)

24 (**Step Detection**) similar to the previous, uses the Android API to generate a step value each time the user takes a step;

25 (Touch event) generates a touch value each time the user touches the screen;

26 (**User Presence**) sensor that detects when the user is present near the phone, for example when the user unlocks the screen;


27 (**WIFI Network** connected to) returns information related to the WiFi network to which the phone is connected to, if connected will also report the WiFi network id;

28 (**WIFI Networks available**) returns all WiFi networks detected by the smartphone.

3. Sensor data by Context

Location (WE) in Context

- A location can be recognized via:
 - Spatial location
 - Characteristics of the environment
 - Artificial elements
 - Sound
 - etc

- Example of sensors for Location recognition are:
 - GPS (Hardware)
 - Temperature (Hardware)
 - Wi-Fi networks available (Software)
 - Cell tower (Software)
 - Microphone (Hardware)

Event (WA) in Context

- An Event can be recognized via:
 - Movement
 - Sound
 - Smartphone usage
 - Location
 - etc

- Example of sensors for Event recognition are:
 - Accelerometer (Hardware)
 - Gyroscope (Hardware)
 - Microphone (Hardware)
 - GPS (Hardware)
 - Screen status (Software)
 - Application running on the device (Software)

Persons (WO) in Context

- The presence of other people can be recognized via:
 - Location
 - Presence of other devices
 - Social media
 - Sound
- Important to highlights that nowadays both hardware and software presence are important

- Example of sensors for Persons recognition are:
 - GPS (Hardware)
 - Bluetooth (Hardware)
 - Wi-Fi networks (Software)
 - Cell tower (Software)
 - Tags
 - Microphone (Hardware)
 - Running application (Software)
 - Notifications (Software)

Objects (WI) in Context

- The presence of other objects can be recognized via:
 - Wi-Fi or Bluetooth signals
 - Sound
 - etc

- Example of sensors for Objects recognition are:
 - Bluetooth (Hardware)
 - Wi-Fi networks (Software)
 - Microphone (Hardware)
 - Tags

Internal State (IN) in Context

- The presence of the internal state is related to:
 - Heart Status.
 - Biological Signals.
 - Self Assessment.

- Example of sensors for Objects recognition are:
 - Heart Rate (Hardware).
 - Heart Rate Variability (Hardware, Software).
 - Electrodermal Activity (EDA) Sensor (Hardware).

4. External Sensors

- 1. Social Media
- 2. Images
- 3. Personal (Calendar and Contact)

External Sensors

- There is no single solution, each type of data allows to detect different aspects
- Moreover, each field of study has its own means: sociologists, engineers, data scientists, psychologists, doctors, etc.
- Acquisition is automated

- Sociologists use time diaries
- CS (web) web data
- CS (web) social media
- CS (multimedia) use video streams
- CS (embedded systems) use sensor streams
- Doctors use health records

Social media data

- Social media is any digital tool that allows users to quickly create and share content with the public.
- Social media encompasses a wide range of websites and apps. Some, like X (former Twitter), specialize in sharing links and short written messages.

Social media data – Pro and cons

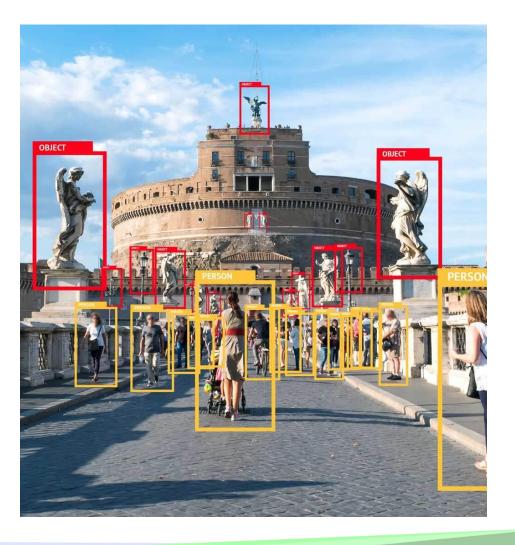
Pro:

- Global coverage
- Easy to collect
- Free
- Human contribution
- Personalization

Privacy?

Cons:

• Only for certain types of analysis (e.g., social relations)



Images

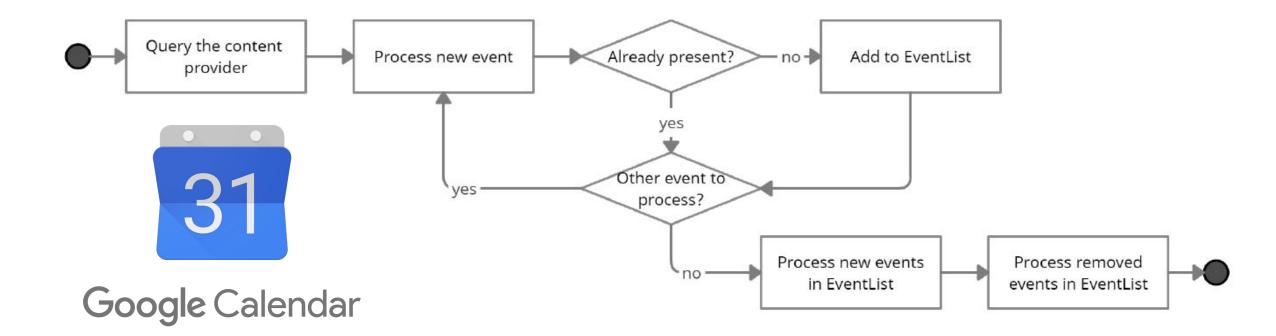
- Image recognition is an active field of study
- Its main purpose is object detection (e.g., faces) but it is not limited to it
- It includes Analyzing images in video streams for activity detection

Images – Pro and cons

Pro:

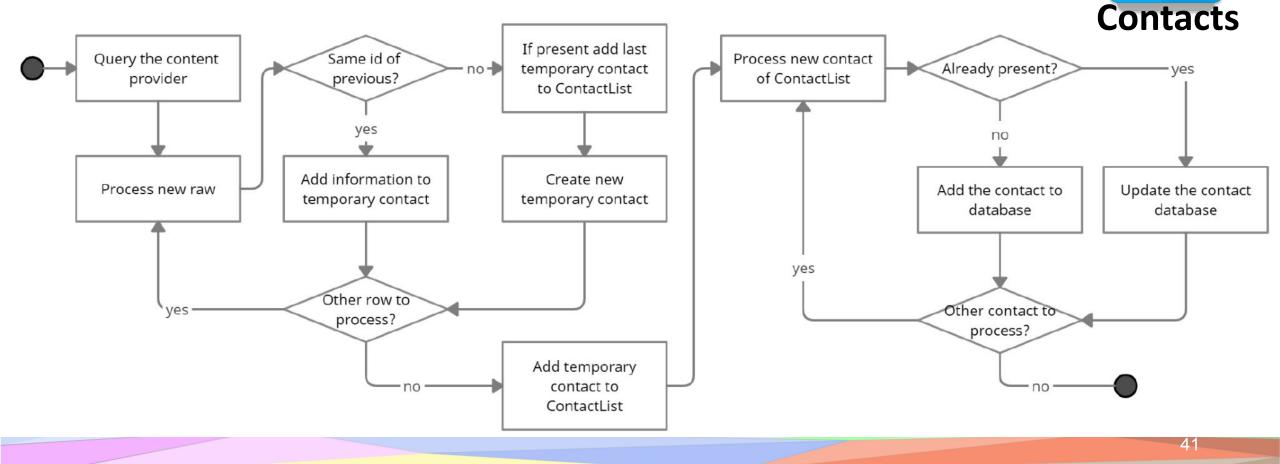
- Open world
- Easier to deploy (less devices)

Cons:


- Expensive (devices and computation)
- Personalization (not empowering)
- Privacy?
- Is it accurate enough?
- Where is the human contribution?

Personal - Calendar

Calendar is the extraction of events from the Calendar.



Know dive

Personal - Contacts

Contacts is the extraction of contact information list from the cellphone's Contacts application.

Use Case: Student's University Life

We ran the SmartUnitn One and Two experiments in 2016 and 2018 respectively to collect time use data from students in the University of Trento. The final goal of these experiments is to understand the how the students spend their time and how their time management ability affects their academic performance. Instead of using traditional survey, we designed and developed an App i-Log installed in students' mobile phone to collect students' answers and collect data of sensors embedded in the phone.

Tools and Data Types

• Tools: i-Log

- Data collection
- Time diaries
- Data Types:
 - Smartphone-based data
 - Survey-based data
 - Third-party data

Smart Unitn One Smart Unitn Two

What are you doing?	Where are you?	Who is with you?
Lesson	Class	Alone
Study	Study Hall	Classmate(s)
Eating	Library	Friend(s)
Personal Care	Other University place	Roomate(s)
En route (*)	Canteen	Partner(s)
Social life	Bar/ Pub/etc	Relative(s)
Social media & internet	Home	Colleague(s)
Cultural Activity	Other Home	Other
Sport	Workplace	
Shopping	Outdoors	
Hobbies	Gym	
Other Free Time	Shop	
Work	Other Place	
Housework	(*) How are you travelling?	
Volunteering	By Foot	
Other	By Bus	
	By Train	
	By Car	
	By Motorbike	
	By Bike	
	Other	

Figure 3.1:	The questionnaire in	SmartUnitn One.
-------------	----------------------	-----------------

What are you doing?	Where are you?	With whom are you?	What is your mood?
Sleeping	Home Apartment Room	Alone	1. 😃
Self-care	Relatives Home	Friend(s)	2. 🙂
Eating	House (friends others)	Relative(s)	3. 😑
Study	Classroom / Laboratory	Classmate(s)	4. 😕
Lesson	Classroom / Study hall	Roommate(s)	5. 😕
Social life	University Library	Colleague(s)	
Watching YouTube Tv-shows etc.	Other university place	Partner	
Social media (Facebook Instagram etc.)	Canteen	Other	
Travelling (*)	Other Library		
Coffee break cigarette beer etc.	Gym	(*) How are you moving?	
Phone calling; in chat WhatsApp	Shop supermarket	By subway	
Reading a book; listening to music	Pizzeria pub bar restaurant	By car	
Movie Theatre Concert Exhibit	Movie Theatre Museum	By foot	
Housework	Workplace	By bike	
Shopping	Other place	By bus	
Sport	Outdoors	By train	
Rest/nap		By motorbike	
Hobbies		Other	
Work			

Figure 3.2: The questionnaire in SmartUnitn Two.

- Two weeks
 - week #1: survey every 30 mins
 - week #2: only sensor data collected
- Participants:
 - 312 students were contacted
 - 104 students fulfilled criteria
 - 75 students took part in
 - 72 valid participants

- Four weeks
 - week 1-2: survey every 30 mins
 - week 3-4: survey every 2 hours
- Participants:
 - 12000 students were sent emails
 - 273 students registered
 - 237 students took part in
 - 184 valid participants

Listening is not enough, we must ask. Knowing is not enough; we must apply.

Any Questions?